Extensions 1→N→G→Q→1 with N=C22.F5 and Q=C22

Direct product G=NxQ with N=C22.F5 and Q=C22
dρLabelID
C22xC22.F5160C2^2xC2^2.F5320,1606

Semidirect products G=N:Q with N=C22.F5 and Q=C22
extensionφ:Q→Out NdρLabelID
C22.F5:1C22 = D5:(C4.D4)φ: C22/C2C2 ⊆ Out C22.F5408+C2^2.F5:1C2^2320,1116
C22.F5:2C22 = C2xC23.F5φ: C22/C2C2 ⊆ Out C22.F580C2^2.F5:2C2^2320,1137
C22.F5:3C22 = C2xD4.F5φ: C22/C2C2 ⊆ Out C22.F5160C2^2.F5:3C2^2320,1593
C22.F5:4C22 = Dic5.C24φ: C22/C2C2 ⊆ Out C22.F5808-C2^2.F5:4C2^2320,1594
C22.F5:5C22 = Dic5.21C24φ: C22/C2C2 ⊆ Out C22.F5808C2^2.F5:5C2^2320,1601
C22.F5:6C22 = Dic5.22C24φ: C22/C2C2 ⊆ Out C22.F5808C2^2.F5:6C2^2320,1602
C22.F5:7C22 = C2xD5:M4(2)φ: trivial image80C2^2.F5:7C2^2320,1589

Non-split extensions G=N.Q with N=C22.F5 and Q=C22
extensionφ:Q→Out NdρLabelID
C22.F5.1C22 = C2xDic5.D4φ: C22/C2C2 ⊆ Out C22.F5160C2^2.F5.1C2^2320,1098
C22.F5.2C22 = (C4xD5).D4φ: C22/C2C2 ⊆ Out C22.F5804C2^2.F5.2C2^2320,1099
C22.F5.3C22 = (C2xD4).9F5φ: C22/C2C2 ⊆ Out C22.F5808-C2^2.F5.3C2^2320,1115
C22.F5.4C22 = (C2xQ8).7F5φ: C22/C2C2 ⊆ Out C22.F5808-C2^2.F5.4C2^2320,1127
C22.F5.5C22 = Dic5.20C24φ: trivial image808+C2^2.F5.5C2^2320,1598

׿
x
:
Z
F
o
wr
Q
<